
NONISOTHERMAL MOTION OF A GAS IN A CHANNEL WITH 

PARTIAL ACCOMODATION AT THE WALLS 

I. P. Aleksandrychev, Yu. I. Markelov, 
B. T. Porodnov and V. D. Seleznev UDC 533.6.011.8 

The presently available kinetic models of transport processes in gases usually give 
a sufficiently rigorous description of the collisions of gas molecules with each other, 
but the interaction of gas molecules with a solid surface is normally taken into account 
only under the rough assumption of specular or diffuse reflection. The gas-surface inter- 
action is often simplified by modeling the distribution of molecules reflected by the sur- 
face as a power series in the velocity. The terms of the series are determined by intro- 
ducing coefficients of accomodation for the various molecular characteristics. But the 
solution of the Boltzmann equation subject to boundary conditions of this kind, and there- 
fore the model itself, contains an internal contradiction resulting from the fact that the 
kinetic processes occurring in the bulk region of the gas are described at a completely 
different level from processes occurring at the solid surface. 

A systematic kinetic treatment of the motion of a gas in a channel requires a de- 
scription of the motion of molecules in the~region where the fluctuating surface force field 
acts. An appropriate kinetic equation for this problem and its solution were presented 
in [i]. These results give a relation between the distribution function of the molecules 
incident at the wall and that of the reflected molecules~ 

In the present paper we discuss a variational solution of the problem for the noniso- 
thermal motion of a gas in an infinitely long channel for arbitrary density. The starting 
point is the S-model kinetic equation and boundary conditions formulated in terms of the 
scattering kernel. The Cercignani-Lampis scattering kernel [2] is chosen as a model for 
the numerical calculations. The dependence of the kinetic coefficients of the motion of 
the gas on the parameters describing the stochastic motion of gas molecules in the surface 
force field and on the gas-gas interaction is found. 

I. We consider the steady motion of a single-component monatomic gas in an infinitely 
long cylindrical capillary of radius R. The motion is induced by longitudinal pressure 
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and temperature gradients. The axis of the capillary is taken to be the z-axis. The sur- 
face of the capillary is smooth, and the gas is assumed to be weakly perturbed. The follow- 
ing quantities are chosen as scales of measurement in transforming the equations to dimension- 
less form: length, R; velocity ~z/= = (2kT0/m)i/2; number density, no, temperature, To; 
pressure[.p0; distribution function, p08~i2/kTo heat and particle flux densities n0~0-1/~ and 
kT0n080- / , respectively, where k is the Boltzmann constant, and T o , P0, no are certain 
average values of the temperature, pressure, and number density over the capillary. Since 
the motion of a gas in an infinitely long channel can be assumed to be translationally in- 
variant, the distribution function of the gas molecules can be written as a Maxwellian dis- 
tribution whose density and temperature are linear functions of z, plus a correction term 
that is independent of z: f(rl, z, c) = f~ + z[~ + ~(c 2 - 5/2)] + h(rl, c)}, f~ = 
~-3/2exp(-c2). Here rl is the two-dimensional position vector in the plane of the capillary 
cross section; ~ and T are the longitudinal pressure and temperature gradients; h(r• e) 
is the perturbation function; c is the dimensionless absolute velocity of the gas molecules. 
For molecules incident on the channel wall at the point r .... we have e ~ (Cn, c~, Cz), where 
c n = c.n(rw), and n(rw) is the unit normal to the surface of the channel at the point rw and 
is directed inward, while c z is the velocity of the molecules along the z-axis. 

2. We solve the problem using the kinetic equation with the collision integral in 
the S-model [3, 4]. Applying the well-known path-integral procedure to this equation [5-7], 
we obtain an expression for the perturbation function 

h (s, c) = c-~, H (s, c) + h +(0,c) e x p ( - ~ .  (2.1) 

Here  II(x~c)=.I!2~u(s')+-~o (c2--@)q(s')- -c~, s ;  c• (cn~ c,, 0); 
0 

u is the macroscopic velocity of the gas; q is the heat flux density along the capillary; 
6 is the rarefaction parameter; h + is the perturbation function of molecules reflected from 
the channel wall; s' is the coordinate measured along the ray {o = c,/c• (Fig. i). Putting 
s = s (s = 2( c,,.n(0))/c• ) in (2.1), we find a relation between the perturbation function 
of the molecules incident on the wall and that of the molecules reflected from the wall: 

= % h + c)exp[--~-~-ll. (2 2) h-( l ,  c) ~ H ( Z ,  c) + (0, k U /  

A consequence of the axial symmetry of the problem is the relation 

h-(l, c ) =  h-(0, cR),. ( 2 . 3 )  

where c R = (-Cn, cv, c z) i s  t he  v e l o c i t y  v e c t o r  of  a gas molecu le  s p e c u i a r l y  r e f l e c t e d  from 
the  s u r f a c e  of  t he  channel  a t  t he  p o i n t  s = 0. The boundary c o n d i t i o n  i s  f o rmu la t ed  in 
terms of  the  s c a t t e r i n g  k e r n e l .  Assuming t h a t  t he  s c a t t e r i n g  k e r n e l  i s  i s o t r o p i c ,  the  
boundary c o n d i t i o n  can be w r i t t e n  in the  form [1] 

h+ (r~, c) = ~ h -  (rw, cR) = O [c.n (rw)] S de'0 [c' .n (rw)] W0 (c~-+ c') h -  (rw, c~). ( 2 .4 )  

Here r~ i s  t he  p o s i t i o n  v e c t o r  of  t he  channel  w a l l ,  8(x)  i s  t he  H e a v i s i d e  f u n c t i o n ,  and W0(cR~ 
c ' )  i s  t he  s c a t t e r i n g  k e r n e l .  

Using ( 2 . 2 )  through ( 2 . 4 ) ,  i t  i s  a s imple  m a t t e r  to  o b t a i n  an i n t e g r a l  equa t i on  f o r  
the  p e r t u r b a t i o n  f u n c t i o n  of  t he  mo lecu le s  r e f l e c t e d  from t he  wa l l  o f  t he  channel  

} 
C h~ C& 

which is a Fredholm integral equation of the second kind. It was shown in [6] that its 
solution can be represented as a Neumann series. After substituting this solution into 
(2 .1 )  

48 5 h (s, c) = Lcz[2~u + q -f~ (c~ --  -~-) --  [ ,  + ~ (c~ -- y)]},: (2 .6 )  

where L = U, q- U~'sE ~ (~U~'/E) k Uz ; ~x~ (x, e) = ds' exp -- 5 (z c- X ~ (s', c); 
k=l t 0 

is the Dirac delta-function. 

= C.~D(S);  6D(X) 
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With the help of (2.6) one can construct a system of equations for the unknowns u(s) 
and q(s) in the Hilbert spaces G~ and Ga, where the scalar products are defined as <g(rl, 

oo oo 2~ 

c),](r• c)> = ~-~77 exp (--c~--c~)g(r.~e)/(r• e)c~.dc• G~ and (<g(r• e), / ( r  ,,, e)>) = 
0 --oo 0 

1 

2 ~ ; < g ( r m ,  e), ](r• c)>rmdr• f o r  G 2 �9 T h i s  s y s t e m  o f  e q u a t i o n s  has  t h e  fo rm 
0 

45 5 2 5 \ 

3.  The t r a n s p o r t  i n t e g r a l  e q u a t i o n  in  t h e  s y s t e m  ( 2 . 7 )  i s  o f  t h e  F r edho lm  t y p e .  Hence 
i t  can be s o l v e d  u s i n g  t h e  B u b n o v - G a l e r k i n  a p p r o x i m a t i o n  [ 8 ] .  From t h e  g e o m e t r y  o f  t h e  
problemr~ and t h e  symmet ry  p r o p e r t y  ( 2 . 3 )  f o r  h - ,  we can  c h o o s e  as  b a s e  f u n c t i o n s  ~ i ( r i )  = 
r ~ k l - Z ) ,  i = t ,  2 . . . . .  We t h e n  u s e  t h e  f o l l o w i n g  a p p r o x i m a t i o n s  f o r  u and q 

u'  = A1~1 + A,~q~, q' ~ A31 h ( 3 . 1 )  

where  t h e  A m a r e  c o e f f i c i e n t s .  S u b s t i t u t i n g  t h e  t r i a l  f u n c t i o n s  ( 3 . 1 )  i n t o  ( 2 . 7 ) ,  we f i n d  
a s y s t e m  o f  e r r o r s  c h a r a c t e r i z i n g  t h e  d i f f e r e n c e  be tween  t h e  a p p r o x i m a t e  s o l u t i o n  and t h e  
e x a c t  one .  A c c o r d i n g  t o  t h e  B u b n o v - G a l e r k i n  me thod ,  t h e  v a r i a t i o n a l  c o n s t a n t s  a r e  c a l c u -  
l a t e d  f rom t h e  o r t h o g o n a l i t y  c o n d i t i o n  o f  t h e  e r r o r s  t o  t h e  b a s e  f u n c t i o n s .  Then we o b t a i n  
t h e  f o l l o w i n g  s y s t e m  o f  e q u a t i o n s  f o r  t h e  c o e f f i c i e n t s  A m 

3 

~=x (3.2) 
TT 46 V T 46 ( S t l  -~  T T  

= p T  T T  

Here i, j = I, 2; ~ij = (<Oi, ~j>); sP~ = (<~iCz , 0sCz~j>) ; si jpT = (<~2xCz,. ~sCz(C2_5/2)~j>); 
Tp ^ s..z3 = ( < ~ i C z ( C 2 - 5 / 2 ) ,  U s c z S j > )  ; siTT = ( < ~ i C z ( C 2 - 5 / 2 ) ,  U s c z ( C 2 - 5 / 2 ) ~ , j > ) ;  

(< 7) h = l  

p T  ~ ~ l~j = ~;ic~, U~E ~ (~z~')~ U~c~ (c ~ -- 5/2) ~j ; 

l~ v= (<*~c~(c~--5/2), U~'~E~:~ (I~U~E)~ Uzc~*~>); 

The p e r t u r b a t i o n  f u n c t i o n  h i s  c o n v e n i e n t l y  w r i t t e n  as  h = vhp + ~h T. Then t h e  m a c r o s c o p i c  
v e l o c i t y  and h e a t  f l u x  d e n s i t y  a r e  

u'  = vup + ZUT, q' ' (3.3) 

If the constants A~ and also the elements of the column of free terms are written as A m = 
vA~ + ~A T, b n = vbn~ + ~b T, then (3.2) splits up into two independent systems of algebraic 
equations. Solving these equations and substituting the results for the coefficients A m 
into (3.3), we have 

AVr ~ ~ (A T + A~r• q' = A -~ ~AT}, ~ ' = a - ~ { ~ ( ~ +  ~ + ~  ~ {~a~+ 

where  ~ i s  t h e  d e t e r m i n a n t  o f  t h e  m a t r i x  [a~m]; 5 k. i s  t h e  d e t e r m i n a n t  o f  t h e  m a t r i x  o b t a i n e d  
by r e p l a c i n g  t h e  mth column o f  [ a ~ ]  by t h e  colum3n o f  f r e e  t e r m s  [bnk]  , where  k = p ,  T. 
The resulting expression for the distribution function is ill-suited for the calculation 
of local values of the macroscopic parameters of the gas motion in the capillary. However 
this expression is useful in giving a sufficiently accurate description of the behavior 
of the system as a whole, particularly the integrated characteristics of the motion of the 
gas in the capillary. 
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4. The particle and heat fluxes through a cross section of the channel are given by 

E L E L 

(E i is the cross section of the channel). Substituting the variational solution found 
above for h( r• e ) into this formula, the fluxes transform to 

AI 

I n  t h e  c a s e  o f  f r e e - m o l e c u l a r  f l o w ,  t h e  f l u x e s  i n  t h e  l i n e a r i z e d  p r o b l e m  c a n  be  w r i t t e n  
a s  

j ~  4 4 ~ v 
v - - - ~ - + 3 < h o ,  h + > * ,  " f q = - -  - - - 5 -  + - $ "  "~ + 3  h o c ~ -  , h +  , 

�9 </(c),  g (e)>* = 23 -1 S 0 (cn) cn exp ( - -  c ~-) g (c) / (e) de. 

S u b s t i t u t i n g  i n  t h e s e  e x p r e s s i o n s  t h e  s o l u t i o n  o f  ( 2 . 5 )  f o r  t h e  K n u d s e n  f l o w  r e g i m e  h + = 

I~kho ~ + "r, c2 - -  ~ , h o = .cncz/c ~ , we h a v e  
h = l  

'.iV 4-V']{ [ h~__~l ] [+  h'~l ( 5 N '~1/ (4.2) :s 'v 1+3 N k - - ~  - - 3  = M h - - ~  h]J] ,  

Nk  ---- (ho, W h o )*, M~ (hoc", VV~ho )* (ho, Wkhoc2)*,  

Y h : < h o c  2, ~hhoC 'z >*. 

In the derivation of these expressions, we used the relation <f, Qkg>* = <g, ~kf>*, which 
is valid if the scattering kernel satisfies the reciprocity relation. The series in (4.2) 
converge when the reflection of gas molecules from the channel wall is nonspecular. Thus 
we have obtained expressions for the heat and mass fluxes as functions of the scattering 
kernel. By comparing the calculations for different models of the scattering kernel with 
the experimental data, we can estimate the effectiveness of the different models in describ- 
ing the interaction of the gas molecules with the solid surface, and we can compute the para- 
meters of this interaction. 

One method of testing the correctness of our solution is to see if the Onsager rela- 
tions are satisfied. According to linear nonequilibrium thermodynamics, there exists the 
following relation between "fluxes" and "forces" of the same tensor rank: 

�9 f i  = ~. L~jxj ( 4 . 3 )  
3 

(Lij are the kinetic coefficients). Hence if we choose the "thermodynamic forces" in the 

form x N = -v, Xq = --r, then we have from (4.1) and (4.3) 

( L~N=--~A -~\A~+ z }' 

AP 
L q N = - - ~ - - ,  L q q = - - ~ A - 1 A  T. 

To p r o v e  t h e  e q u a l i t y  o f  t h e  c r o s s  k i n e t i c  c o e f f i c i e n t s  LNq and  LqN, i t  i s  s u f f i c i e n t  t o  
expand the determinants AT~ A T , h~. In doing this it is necessary to use the self-adjoint 
property of the operators U s and Q in the space G 2, which is a consequence of the symmetry 
of the kernel of the operator U s and the reciprocity of the scattering kernel W0(c' -+e). 
The rest of the proof is obvious, as is the proof of the Onsager relation in the case of 
free-molecular motion of the gas. Hence we conclude that the method of solution given 
above does not violate general physical principles. 

5. The kinetic coefficients (4.4) characterize the nonisothermal motion of a gas in 
an infinitely long channel. To calculate these coefficients as functions of the scattering 
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kernel, we must choose a particular model of the scattering kernel. We use the Cercignani- 
Lampis model [2] for this purpose. In (4.4) only the ~mn remain undetermined. It is not 

• 
possible to obtain analytical formulas for these quantitles over the entire range of Knudsen 
numbers. Therefore we calculate only asymptotic expressions for the kinetic coefficients. 

In the case when the motion of the gas in the channel is nearly continuum in nature, 

i.e., when 6 + ~, we find, after lengthy but straightforward calculations, that the kinetic 
coefficients take the form 

~ ( al a 2 % )  
L~,N----- -if- 5 i + "8- + ~ -P -~" ': ( 5 . 1 )  

16 6 I + W + - ~ - +  , Lqq- - - -g- - -g  t + - - s  ~ ,: 

w h e r e  a 1 = l  1 + m I ,  a 2 = m ~ - m  2 + l l m  I - I ~ - 4 ,  

b~ = t ~ ( t o m l  - -  t~), b 2 = to  1 {t o (m~ - -  m~) - -  t i m  1 q- tf},: 

b a = to  1 {t o (m~ - -  2mira  2 q- m3) - -  t 1 (m~ - -  raf)  q- t~m I q- t3}~j 

~ = z ( . ~  - d~), ~ = 3 ( . ~  - -  , ~  - -  a~m~ + a,),: 

C 3 = 3 {m~ - -  2 r n l m  2 - -  m s - -  d I ( m l  2 - -  D't2) -~ df/Tt 1 -~ d3],: 
. ~  = (5 y ' ~ )  -~ (~7 + 5 .  + ~ (~ - 5 .  - : .  + l o s )  + 2~},: 

rnz = (40~) -~ {i99g - -  96 q- e [32 q- i 3 1 g -  ~ (32 q- 92a) - - 4 8 S ]  - -  

- -  e~ [ 2 .  ( 5  - -  6 a .  + a S )  - -  ~6 (1 - -  a ~ )  S ]  + ~ 6 s  ~ ( ~  + 4 )  - -  1 6 ~ '  ( ~  - -  .~S)}.:  

, ~  = ( 40 ~ ) - ~  [4~4 - ~ ( 25~ - ~ .03~  + 3 0 .  F ~  - 3 0 s )  - 

- -  e 3 [6 + : .  (15u - -  9) + 3=$ - -  30~ V ~  + 30S] - -  

- -  i42e ~ - -  6e 4 (3 - -  2an) - -  24e ~ }, 

h = 4 F~7 ~ + (5 V~)-' {3 - ~ (~ - ~) - 2~} ,  

l~ = (40at)  -~ {~59 + 2e (i89 - -  4a~ + t60S) + 3~ ~ ( i3  - -  8~z~) + 64~}, 

z~ = - (40~,  F ~ )  -~ { e o o +  3 e .  + ~[~t~  - ~ 3 4 ~  + ~ . ( 6 ~  + z ~ 2 . )  + 

+ 6o~ V ~  + 2oss]  + ~ [32~ - 52 + ~ ( 5 8 -  ~2~) + ~ ( 3  + s ~ ) -  

- 6 o .  F V n  + ( 6 ~ - -  8 0 ) S ]  - -  ~ O e s - -  9 ~  + 3~$)  - 

- -  4 e ~ (35 - -  3a~ + 32S) + 6e ~ (l - -  2a~) + 24e ~ - -  24e~}, 

t o = 3 - -  e (1 - -  a ~ ) ~  t~ = 2 : ~ - ~ / z  {7  + 2:~ - -  e [2  + 2 n  - -  a,~ ( ~ + 2 ) - -  2 S ]  - -  e~},~ 

t z = - ~ - I  { 2 2 5 - - e ( 8 0  . . . .  83an 6 ] / ~ ) - - s ~ ( i  a , 3 ( 9  6 ] / ~ n ) - - 2 O e Z i i 2 e , ( i - - V ~ ) } ,  
t~ = (4 V~) -~ s {88 -- I09~ -- i5g V~ + ~8S § 3s [4 -- an (6 + ~) + 

+ 2~$ + ~ F$ (~ + ~) + 2 (~ - 2~)s] - ~s~: - 3~ (7 - ~ - 4~/$ + as) + $9~}, 

d~ = ~-~/~ {4 + ~ - -  ~ (~ - -  2S)}, d~ = ~ {45 + ~ (~9 - -  ~6~)} ,  

ds = (8 V - ~ ) - ~ { 6 0 -  e(44 - 32a~ + 6g V ~  - 6s)  - ez(3ua~ - -  6n ]/ '~. .  + 6S) - -  16e3}, 

( K ( x )  and  E ( x )  a r e  t h e  c o m p l e t e  e l l i p t i c  i n t e g r a l s  o f  t h e  f i r s t  and  s e c o n d  k i n d s ) .  Ob- 
v i o u s l y  the expansion coefficients a~, b i, c i are functions of the parameters of the model 
for the scattering kernel. In the case considered here these parameters are ~t and ~n, 
which can be interpreted as coefficients of accomodation of the tangential component of 
the momentum and the part of the kinetic energy corresponding to motion along the normal 
to the channel wall. 

The coefficients of accomodation ~n and ut are related to the physical parameters 
characterizing the stochastic motion of the gas molecules in the surface force field [i]: 

a n = 1 - exp(-4d/s , a t = 1 - exp(-fd/s Here d is the penetration depth; Zn and s 
are two characteristic lengths determined by the diffusion of gas molecules near the sur- 
face in velocity space. Concerning the derivation of (5.1), we note that there exists a 
unique relation between the number of terms in the expansions of the kinetic coefficients 
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in powers of i/6 and the number of terms in the Neumann series solution of (2.5) needed 
to obtain the expansion. In derivation of (5.1) it is sufficient to use three terms in 
the Neumann series for (2.5). The succeeding terms contribute only to the expansion co- 
efficients corresponding to higher powers of I/d. 

The Cercignani-Lampis scattering kernel, which describes the scattering of gas molecules 
by an anisotropic surface, is a function of three parameters: an, a~, a z. The parameters 
a~ and a z can be interpreted as coefficients of accomodation of the tangential components 
of the momenta of the gas molecules (tangent to the circumference of the circle defining 
the channel cross section and along the longitudinal axis of the channel, respectively). 
These coefficients satisfy the inequalities 0 5 a n ~ i, 0 i a~ ~ 2, 0 5 ~z J 2. This model 
of the scattering kernel leads to the following asymptotic formulas for the kinetic coef- 
ficients in the free-molecular regime: 

5 ( 5 . 2 )  4-V'~ 43/-~ --3 ~ Mh-- .-EN h L ~ N  = ~'3 t + 3 N h  , L~q = Lqn = 3 ~w , 
h = l  

4 ~ / ~ / ' 9  . ~ ( 2 5  N )} 
~=~T ~-- 

L~q = ---U- ['%- + 3 5M h + Vh 

The f u n c t i o n s  N k ,  Mk, V k f o r  cha = 1 a r e  

z ( 1 - % ) ~  

3 N {3 + 2 0 - -  + 3 ~ ( t - - ~ ) ~ ,  Vh = M~ = "-U N~ + --g- 

and for a~= i we have 
(I--%)~ (P~--2)' M~= 3 (i--~)~ 

(5.4) 

v k = i { l  + Oh, 
Ph = 2E[( I  -- a . )  k~2] -- [t -- (t - -  a . ) k ] K [ ( t  -- ~.)kl~], 

O h = [1 @ (i - -  a~)h lE[( t  - -  a~) hl~] - -  [t - -  (t - -  a,~)h]K [(t - -  an)hi2]. 

6.  Thus  We h a v e  s o l v e d  t h e  p r o b l e m  f o r  t h e  t r a n s p o r t  o f  h e a t  and  mass i n  t h e  n o n i s o -  
t h e r m a l  m o t i o n  o f  a r a r e f i e d  ga s  i n  a c y l i n d r i c a l  c a p i l l a r y .  The s o l u t i o n  i s  b a s e d  on a 
systematic kinetic treatment of the intermolecular collisions and the gas-surface interac- 
tion. General expressions for the kinetic coefficients are found in terms of the interac- 
tion of the gas molecules with the surface throughthe scattering kernel. The results are 
valid for scattering kernels which are normalized, positive, and which satisfy the recipro- 

city relation. 

The kinetic coefficients are calculated for the viscous and free-molecular flow regimes 
for the two-parameter Cercignani-Lampis model of the scattering kernel, which describes 
the stochastic motion of the gas molecules in the surface force field. From (5.1) for the 
kinetic coefficients in the viscous limit, we obtain the following expressions for the 

viscous and thermal slip constants 

% = 1 %  + q -  § - ~  § 

gT = + {l - -  + ( t  - -  a . )  (t  - -  =t)}. ( 6 . 2 )  

These constants do not depend on the choice of statistical model of the intermolecular 
collision operator nor on the geometry of the problem, but are determined solely by the 
gas-surface interaction law. Theabove results for Cp and o T reduce to results obtained 
previously in limiting cases. When a n = a t = i and a n = a t = 0 (which correspond to the 
cases of diffuse and specular reflection, respectively), they reduce to the values given 
in [9], and when a = i, they reduce to the results of [i0]. In [i0] the parameter of a n in 
the two-parameter Cercignani-Lampis model of the scattering kernel was unjustifiably as- 
sumed to be equal to unity in the calculation of the slip constants. This assumption leads 
to an expression for o T which is independent of the gas-surface interaction parameters, and 
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this contradicts the experimental data [Ii]. It follows from (6.2) that the thermal slip 
constant is equal to the corresponding value in the diffuse limit, both in the case of total 
accomodation of the tangential components of the momentum, and also in the case of total 
accomodation of the energy for motion along the normal to the wall. Expressions (6.1) and 

(6.2) can be Considered to be a system of equations for the parameters a n and a t in terms of 
the experimental values of the constants Op and o T. However a graphical solution of this 
system of equations using the experimental results of [II, 12] shows that the system is 
inconsistent, i.e., it is impossible to choose a pair of values a n and a t which simultane- 
ously characterize the boundary conditions for isothermal and nonisothermal motion of the 
gas. This means that additional experimental study is needed on the phenomenon of slipping 
and that better experimental models of the scattering kernel are needed. 

If we consider the free-molecular regime of the motion of the gas in the capillary, 
and assume that 1 - a z << 1 and 1 - ~ << I, then it is not difficult to find from (5.2) 
and (5.3) 

L~N = i~{~ + ~ (I--~)[I + (~ -- ~) + O-- ~z)~ + ~(~_ ~)2]}, ( 6 . 3 )  

LA~q=LqN=----~--(I+-g~(i--a~)(I 3 (I a~) 3 : [ +  

Similarly, starting from (5.2) and (5.4), and the assumption that 1 - a z << i, i - a n << i, 
we obtain 

LNN = 4~3 n ( t  § ~8 (t _ a~) [t  + (l _ a~) + _ ~ ( l  _ a~)]}, ( 6 . 4 )  

2 " ~ l i + 9 n  } 
L~q = Lq~ 3 -@ (l - -  ~z) (l - -  a~) , 

( 3n(i ~z) (i -- ~n))- L q q = 3  ]/'E t + ~  - -  

The series in (5.2) can be summed when a n = I and ~r = i. The kinetic coefficients in this 
case are given by 

41/ { 1 LNN = - T  ] + 8 a z J' LNq = LqN = - -  2n/3, ( 6 . 5 )  

I t  i s  e v i d e n t  f rom ( 6 . 3 )  and ( 6 . 4 )  t h a t  t h e  c o e f f i c i e n t s  LNq and Lqq depend  more w e a k l y  on 
t h e  p a r a m e t e r s . o f  t h e  C e r c i g n a n i - L a m p i s  model  o f  t h e  S c a t t e r i n g  k e s  t h a n  does  LNN. Ac- 
c o r d i n g  t o  ( 6 . 3 )  t h r o u g h  ( 6 . 5 ) ,  t h e  d e c i d i n g  r o l e  i n  t h e  d e p e n d e n c e  o f  P o i s e u i l l e  f l o w ,  
t h e r m a l  c r e e p ,  and t h e  t h e r m a l  c o n d u c t i v i t y  on t h e  c h a r a c t e r i s t i c s  o f  t h e  i n t e r a c t i o n  o f  
t h e  gas  w i t h  t h e  s u r f a c e  i s  a c c o m o d a t i o n  o f  t h e  t a n g e n t i a l  componen t  o f  t h e  momentum a l o n g  
t h e  z - a x i s .  For  n o n i s o t h e r m a i  m o t i o n  o f  t h e  g a s ,  a l l  t h r e e  c o e f f i c i e n t s  o f  a c c o m o d a t i o n  
p l a y  a c o m p a r a b l e  r o l e .  For  e x a m p l e ,  LNq r e d u c e s  t o  t h e  d i f f u s e  v a l u e  n o t  o n l y  when a z = 1, 
b u t ~ a l s o  when a~ = a e =  t .  

Fo r  t h e  p u r p o s e  o f  v e r i f y i n g  t h e  r e s u l t s  o b t a i n e d  h e r e ,  i t  i s  o f  i n t e r e s t  t o  c o n s i d e r  
t h e  t h e r m o m o l e c u l a r  p r e s s u r e  d i f f e r e n c e  e f f e c t  [ 1 3 ] ,  where  a p r e s s u r e  d i f f e r e n c e  a r i s e s  
be tween  two .vo lumes  o f  gas  j o i n e d  by a c a p i l l a r y  when t h e  t e m p e r a t u r e s  o f  t h e  gas  i n  t h e  
two vo lumes  a r e  m a i n t a i n e d  a t  c o n s t a n t ,  bu t  u n e q u a l  v a l u e s ,  w h i l e  t h e  p r e s s u r e s  in  t h e  v e s -  
s e l s  a r e  i n i t i a l l y  i d e n t i c a l .  I n  t h e  s t e a d y  s t a t e  t h e  t h e r m o m o l e c u l a r  p r e s s u r e  d i f f e r e n c e  
e f f e c t  i s  c h a r a c t e r i z e d  by an a b s e n c e  o f  a f l u x  o f  p a r t i c l e s  t h r o u g h  t h e  c r o s s  s e c t i o n  o f  
t h e  c a p i l l a r y  j o i n i n g  t h e  two v o l u m e s .  I t  was shown in  [14] t h a t  f o r  a r b i t r a r y  Knudsen 
number ,  t h i s  e f f e c t  i s  d e s c r i b e d  by t h e  e x p r e s s i o n  

~ = (r~/r~),~ ( 6 . 6 )  

where X is the thermomolecular pressure difference effect index, and Pi and T i are the pres- 
sures and temperatures in the two volumes after a steady state has been established. The 
index is given by the relation y = -(LNq/LNN ). Using this relation and (6.3) through (6.5), 
it is possible to compute ~ and to determine its dependence on the parameters of the scatter- 
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ing kernel model. Figure 2 shows the dependence of ~ on the coefficient az for several 
values of the coefficients an, ~: a n = 0, ~ = 1 (curve i); a n = i, ~ = 0 (curve 2); 
a n = e~ = 1 (curve 3). It is seen that as the three parameters an, ~, and ~z vary from 
zero to one the index varies from zero to one-half. It is important to note that when 
~z = 0, the thermomolecular pressure difference effect occurs if ~n or ~ are nonzero, and 
does not occur if ~n = ~ = i. Therefore, unlike the diffuse and diffuse-specular reflec- 
tion models, the Cercignani-Lampis model of the scattering kernel describes the experi- 
mentally observed dependence of the thermomolecular pressure difference effect on the nature 
of the interaction of the gas molecules with the surface of the channel. This fact has been 
noted before [15]. 

A detailed analysis of the properties of the Cercignani-Lampis model of the scattering 
kernel shows that it gives a qualitatively correct description of the experimentally ob- 
served dependence of direction of maximum scattered intensity of molecules on the ratio of 
the temperatures of the surface and the molecular beam. Molecules emitted by a high-tempera- 
ture source are scattered more nearly tangentially to the solid surface. Therefore if the 
scattering of the gas by the surface is nondiffuse, the probability of transmission through 
a channel connecting two bulbs is higher for molecules leaving the "hot" bulb than for mole- 
cules leaving the "cold" bulb. Hence the pressure difference between the bulbs is smaller 
than in the case of diffuse scattering of gas molecules by the walls of the channel. This 
corresponds (according to (6.6)) to a smaller value of the index ~, and is indicated in 
Fig. 2. 
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